
December 19, 2014 1 / 35

iscc Tutorial

Sven Verdoolaege

INRIA, France and KU Leuven
Sven.Verdoolaege@inria.fr

December 19, 2014

Sven.Verdoolaege@inria.fr


December 19, 2014 2 / 35

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Statement Instances
Maps and AST Generation
Access Relations and Polyhedral Model
Dataflow Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Introduction December 19, 2014 3 / 35

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Statement Instances
Maps and AST Generation
Access Relations and Polyhedral Model
Dataflow Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Introduction December 19, 2014 4 / 35

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to

some operations from the isl integer set library, including AST
generation

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://barvinok.gforge.inria.fr/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://barvinok.gforge.inria.fr/


Introduction December 19, 2014 4 / 35

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to

some operations from the isl integer set library, including AST
generation

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://barvinok.gforge.inria.fr/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://barvinok.gforge.inria.fr/


Introduction December 19, 2014 4 / 35

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to

some operations from the isl integer set library, including AST
generation

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://barvinok.gforge.inria.fr/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://barvinok.gforge.inria.fr/


Introduction December 19, 2014 4 / 35

Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to

some operations from the isl integer set library, including AST
generation

⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://barvinok.gforge.inria.fr/

How to run iscc?

⇒ compile and install barvinok following the instructions in README
⇒ run iscc

Note: iscc currently does not use readline, so you may want to use a
readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

http://barvinok.gforge.inria.fr/


Introduction December 19, 2014 5 / 35

Interaction with Libraries and Tools

LLVM imath GMP

clang isl NTL PolyLib

Polly pet barvinok

PPCG isa iscc

Licenses:
BSD/MIT
LGPL
GPL

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
PPCG: Polyhedral Parallel Code Generator
iscc: interactive calculator
isa: prototype tool set including derivation of process networks and
equivalence checker



Introduction December 19, 2014 6 / 35

Overview of isl
isl is a thread-safe C library for manipulating integer sets and relations

bounded by affine constraints

involving symbolic constants and

existentially quantified variables

and quasi-affine and quasi-polynomial functions on such domains

Supported operations by core library include
intersection
union
set difference
integer projection
coalescing
closed convex hull

sampling, scanning
integer affine hull
lexicographic optimization
transitive closure (approx.)
parametric vertex enumeration
bounds on quasipolynomials

Polyhedral compilation library
schedule trees

dataflow analysis

scheduling

AST generation



Basic Concepts and Operations December 19, 2014 7 / 35

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Statement Instances
Maps and AST Generation
Access Relations and Polyhedral Model
Dataflow Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= 5; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] ->

{ S

(optional) name of space

[i,j

set variables

] : 1 <= i <= 5 and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] -> { S

(optional) name of space

[i,j

set variables

] : 1 <= i <= n and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 8 / 35

Statement Instance Set

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

j

i

[n

symbolic constants

] -> { S

(optional) name of space

[i,j

set variables

] : 1 <= i <= n and 1 <= j <= i

Presburger formula

}



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 9 / 35

Set Variables and Symbolic Constants

comp

set variables
I local to set
I identified by position

symbolic constants
I global
I identified by name

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }



Basic Concepts and Operations Sets and Statement Instances December 19, 2014 9 / 35

Set Variables and Symbolic Constants

comp

set variables
I local to set
I identified by position

symbolic constants
I global
I identified by name

[n] -> { [i,j] : 1 <= i <= n and 1 <= j <= i }

is equal to

[n] -> { [a,b] : 1 <= a <= n and 1 <= b <= a }

but not equal to

[n] -> { [j,i] : 1 <= i <= n and 1 <= j <= i }

or

[m] -> { [i,j] : 1 <= i <= m and 1 <= j <= i }



Basic Concepts and Operations Maps and AST Generation December 19, 2014 10 / 35

AST Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}

S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({S[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 10 / 35

AST Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i}

or {S[i,j] -> [j,i]}

S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({S[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 10 / 35

AST Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}

S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({S[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 10 / 35

AST Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}

S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({S[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 10 / 35

AST Generation, Schedules and Maps

codegen1,codegen2

for (i = 1; i <= n; ++i)

for (j = 1; j <= i; ++j)

/* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}

S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };

codegen ({S[i,j] -> [j,i]} *

intersect domain of map on the left with set on the right

S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Maps and AST Generation December 19, 2014 11 / 35

AST Generation, Schedules and Maps

codegen3,codegen4

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other

⇒ schedule is required because no ordering defined over spaces with
different names

Examples:

S := [n] -> { A[i] : 0 <= i <= n;

disjunction

B[i] : 0 <= i <= n };

M := { A[i] -> [0,i]; B[i] -> [1

all elements of A before any element of B

,i] };

codegen (M * S);

S := [n] -> { A[i] : 0 <= i <= n; B[i] : 0 <= i <= n };

M := { A[i] -> [i,1]; B[i] -> [i,0

each element of A after corresponding element of B

] };

codegen (M * S);



Basic Concepts and Operations Access Relations and Polyhedral Model December 19, 2014 12 / 35

Access Relations and Polyhedral Model

model

Simple program with temporary array t:

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

An access relation maps a statement instance to an array index
For example, the access relation for the read in S2:

[N] -> { S2[i] -> t[N-i-1] }

Polyhedral model of a program consists of
statement instance set
access relations (must writes, may writes, reads)
initial schedule

M := parse_file("simple.c");

D := M[0]; W := M[1]; R := M[3]; S := M[4];



Basic Concepts and Operations Access Relations and Polyhedral Model December 19, 2014 12 / 35

Access Relations and Polyhedral Model

model

Simple program with temporary array t:

for (i = 0; i < N; ++i)

S1: t[i] = f(a[i]);

for (i = 0; i < N; ++i)

S2: b[i] = g(t[N-i-1]);

An access relation maps a statement instance to an array index
For example, the access relation for the read in S2:

[N] -> { S2[i] -> t[N-i-1] }

Polyhedral model of a program consists of
statement instance set
access relations (must writes, may writes, reads)
initial schedule

M := parse_file("simple.c");

D := M[0]; W := M[1]; R := M[3]; S := M[4];



Basic Concepts and Operations Dataflow Analysis December 19, 2014 13 / 35

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax

lexicographically last element of set

S;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dataflow Analysis December 19, 2014 13 / 35

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dataflow Analysis December 19, 2014 13 / 35

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1

inverse map

);



Basic Concepts and Operations Dataflow Analysis December 19, 2014 13 / 35

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1 inverse map);



Basic Concepts and Operations Dataflow Analysis December 19, 2014 13 / 35

Lexicographic Optimization

lex1,lex2

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

lexmax lexicographically last element of setS;

When is a given array element accessed last?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

lexmax

lexicographically last image element

(Aˆ-1 inverse map);



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);

Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 14 / 35

Dataflow Analysis

dep1

Given a read from an array element, what was the last write to
the same array element before the read?

Simple case: array written through a single access

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

F: a[i+j] = f(a[i+j]);

for (i = 0; i < N; ++i)

W: Write(a[i]);

F

W

a

A1

A2

Access relations:
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

A2:=[N]->{W[i] -> a[i] : 0 <= i < N };

Map to all writes: R := A2 . (A1ˆ-1);
Last write: lexmax R;

In general: impose lexicographical order on shared iterators



Basic Concepts and Operations Dataflow Analysis December 19, 2014 15 / 35

Dataflow Analysis

dep2

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

M := parse_file("dep.c");

Write := M[1]; Read := M[2]; Sched := M[3];

last Write before Read under Sched;



Basic Concepts and Operations Dataflow Analysis December 19, 2014 15 / 35

Dataflow Analysis

dep2

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

for (i = 0; i < n; ++i)

T: t[i] = a[i];

for (i = 0; i < n; ++i)

for (j = 0; j < n - i; ++j)

F: t[j] = f(t[j], t[j+1]);

for (i = 0; i < n; ++i)

B: b[i] = t[i];

M := parse_file("dep.c");

Write := M[1]; Read := M[2]; Sched := M[3];

last Write before Read under Sched;



Basic Concepts and Operations Transitive Closures December 19, 2014 16 / 35

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure?

⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures December 19, 2014 16 / 35

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures December 19, 2014 16 / 35

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures December 19, 2014 16 / 35

Transitive Closures

trans

Given a graph (represented as an affine map)

M := { A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] };

A

B

What is the transitive closure? ⇒ Mˆ+;

A

B

Result:

({ B[] -> A[o0] : o0 <= 4 and o0 >= 3; B[] -> A[2];

A[i] -> A[o0] : i >= 0 and i <= 3 and o0 >= 1 and

o0 <= 4 and o0 >= 1 + i }, True

exact transitive closure

)



Basic Concepts and Operations Transitive Closures December 19, 2014 17 / 35

Reachability Analysis

reach

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t<1000; t++) {

for (i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

new = (new+1) %2; old = (old+1) %2;

}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};

S0 := {[0,1]};

(Tˆ+)(S0);



Basic Concepts and Operations Transitive Closures December 19, 2014 17 / 35

Reachability Analysis

reach

double x[2][10];

int old = 0, new = 1, i, t;

for (t = 0; t<1000; t++) {

for (i = 0; i<10;i++)

x[new][i] = g(x[old][i]);

new = (new+1) %2; old = (old+1) %2;

}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};

S0 := {[0,1]};

(Tˆ+)(S0);



Basic Concepts and Operations Basic Counting December 19, 2014 18 / 35

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card

number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting December 19, 2014 18 / 35

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting December 19, 2014 18 / 35

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card

number of image elements

(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting December 19, 2014 18 / 35

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card number of image elements(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting December 19, 2014 18 / 35

Cardinality

card1,card2,card3

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

card
number of elements in the set

S;

How many times is a given array element written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card number of image elements(Aˆ-1);

How many array elements are written?

A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};

card (ran A);



Basic Concepts and Operations Basic Counting December 19, 2014 19 / 35

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * floor((n)/2)) :

n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Basic Counting December 19, 2014 19 / 35

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * floor((n)/2)) :

n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Basic Counting December 19, 2014 19 / 35

Quasipolynomials

card4

for (i = 1; i <= n; ++i)

for (j = 1; j <= n - 2 * i; ++j)

/* S */

How many times is S executed?

card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };

Result:

[n] -> { ((-1/4 * n + 1/4 * nˆ2) - 1/2 * floor((n)/2)) :

n >= 3 }

That is,

−
n
4
+

n2

4
−

1
2

⌊n
2

⌋
if n ≥ 3.

Polynomial approximations
⇒ run iscc --polynomial-approximation



Basic Concepts and Operations Computing Bounds December 19, 2014 20 / 35

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds December 19, 2014 20 / 35

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds December 19, 2014 20 / 35

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Computing Bounds December 19, 2014 20 / 35

Memory Requirements

bound

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p = malloc(i * j + i - N + 1);

/* ... */

free(p);

}

How much memory is needed?

ub [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};

Result:

([N] -> { max((1 - 2 * N + Nˆ2)) : N >= 1 }, True

bound is tight

)



Basic Concepts and Operations Weighted Counting December 19, 2014 21 / 35

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting December 19, 2014 21 / 35

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting December 19, 2014 21 / 35

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain

[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting December 19, 2014 21 / 35

Incremental Counting

sum1

for (i = 0; i < N; ++i)

for (j = 0; j < N - i; ++j)

a[i+j] = f(a[i+j]);

How many times is the statement executed?

direct computation

card [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };

incremental computation

card [N] -> { [i] -> [j] : 0<=i<N and 0<=j<N-i };

Result:
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 }

sum

sum over all elements in domain
[N] -> { [i] -> (N - i) : i <= -1 + N and i >= 0 };



Basic Concepts and Operations Weighted Counting December 19, 2014 22 / 35

Total Memory Allocation

sum2

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

p[i][j] = malloc(i * j + i - N + 1);

/* ... */

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

free(p[i][j]);

How much memory allocated in total?

sum [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};



Basic Concepts and Operations Weighted Counting December 19, 2014 22 / 35

Total Memory Allocation

sum2

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

p[i][j] = malloc(i * j + i - N + 1);

/* ... */

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

free(p[i][j]);

How much memory allocated in total?

sum [N] -> {[i,j] -> i*j+i-N+1: 0 <= i < N and i <= j < N};



Basic Concepts and Operations Weighted Counting December 19, 2014 23 / 35

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting December 19, 2014 23 / 35

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting December 19, 2014 23 / 35

Weighted Counting

sum3,sum4

y

x2+y2

4

x

x

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D

M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting December 19, 2014 23 / 35

Weighted Counting

sum3,sum4

y

x2+y2

4

xx

5+2x2

4

M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting December 19, 2014 23 / 35

Weighted Counting

sum3,sum4

y

x2+y2

4

xx

5+2x2

4
M : x → (x, y)

F := { [x,y] -> 1/4*xˆ2+1/4*yˆ2 : 1 <= x,y <= 2 };

D := dom F;

F(D);

⇒ sum of F over points in D
M := { [x] -> [x,y] };

F(M);

⇒ sum of F over image of M (alternative notation: M . F)



Basic Concepts and Operations Weighted Counting December 19, 2014 24 / 35

Compositions with Piecewise (Folds of)
Quasipolynomials

f . g;

f: D1 → D2 is a map
g: D2 → Q may be

I piecewise quasipolynomial
(result of counting problems)

⇒ take sum over intersection of ran f and dom g
I piecewise fold of quasipolynomials

(result of upper bound computation)

⇒ compute bound over intersection of ran f and dom g

(f . g): D1 → Q of same type as g

Note: if f is single-valued, then sum/bound is computed over a single point



Simple Applications December 19, 2014 25 / 35

Outline

1 Introduction

2 Basic Concepts and Operations
Sets and Statement Instances
Maps and AST Generation
Access Relations and Polyhedral Model
Dataflow Analysis
Transitive Closures
Basic Counting
Computing Bounds
Weighted Counting

3 Simple Applications
Pointer Conversion
Dynamic Memory Requirement Estimation
Reuse Distance Computation



Simple Applications Pointer Conversion December 19, 2014 26 / 35

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += 1 + j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than

(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion December 19, 2014 26 / 35

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += 1 + j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than

(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion December 19, 2014 26 / 35

Pointer Conversion

p = a;

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j) {

p += 1 + j * ((j-i)/4);

*p = hard_work(i,j);

}

Can we parallelize this code?

⇒ No, (false) dependency through p
⇒ Compute closed formula for p

p = a +
∑

(i′,j′)∈S
(i′,j′)4

lexicographically less than
(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }



Simple Applications Pointer Conversion December 19, 2014 27 / 35

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion December 19, 2014 27 / 35

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion December 19, 2014 27 / 35

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion December 19, 2014 27 / 35

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Pointer Conversion December 19, 2014 27 / 35

Pointer Conversion

pointer

p = a +
∑

(i′,j′)∈S
(i′,j′)4(i,j)

j′
⌊
j′ − i′

4

⌋

with S = { (i′, j′) ∈ Z2 | 0 ≤ i′ < N ∧ i′ ≤ j′ < N }

S := [N] -> { [i,j] : 0 <= i < N and i <= j < N };

L := S <<=

map: (elements of) left set lexicographically smaller than right set

S;

INC := { [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] };

INC := INC * (wrap

embed map in a set

(Lˆ-1));

sum INC;

Note: if domain of argument to sum [ub] is an embedded map, then sum
[bound] is computed over range of embedded map



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 28 / 35

Dynamic Memory Requirement Estimation [CFGV2006]
How much memory is needed to execute the following program?

void m0(int m) {
for (c = 0; c < m; c++) {
m1(c); /*S1*/

B[] m2Arr = m2(2*m-c); /*S2*/

}

}

void m1(int k) {
for (i = 1; i <= k; i++) {
A a = new A(); /*S3*/

B[] dummyArr = m2(i); /*S4*/

}

}

B[] m2(int n) {
B[] arrB = new B[n]; /*S5*/

for (j = 1; j <= n; j++)
B b = new B(); /*S6*/

return arrB;
}

D := {

m0[m]->S1[c] : 0<=c<m;

m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k;

m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[];

m2[n]->S6[j] : 1<=j<=n

};



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 28 / 35

Dynamic Memory Requirement Estimation [CFGV2006]
How much memory is needed to execute the following program?

void m0(int m) {
for (c = 0; c < m; c++) {
m1(c); /*S1*/

B[] m2Arr = m2(2*m-c); /*S2*/

}

}

void m1(int k) {
for (i = 1; i <= k; i++) {
A a = new A(); /*S3*/

B[] dummyArr = m2(i); /*S4*/

}

}

B[] m2(int n) {
B[] arrB = new B[n]; /*S5*/

for (j = 1; j <= n; j++)
B b = new B(); /*S6*/

return arrB;
}

D := {

m0[m]->S1[c] : 0<=c<m;

m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k;

m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[];

m2[n]->S6[j] : 1<=j<=n

};



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 29 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem1

How much (scoped) memory is needed?

⇒ compute for each method
retm size of memory returned by m

capm size of memory “captured” (not returned) by m
memRqm total memory requirements of m

retm + capm =
∑

p called by m
retp

memRqm = capm + max
p called by m

memRqp

⇒ summarize over statement instances, i.e., compose with
M = (dom

−−−→
I)−1

D := {

m0[m]->S1[c] : 0<=c<m; m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k; m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[]; m2[n]->S6[j] : 1<=j<=n };

DM := (domain_map D)ˆ-1;



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 29 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem1

How much (scoped) memory is needed?

⇒ compute for each method
retm size of memory returned by m

capm size of memory “captured” (not returned) by m
memRqm total memory requirements of m

retm + capm =
∑

p called by m
retp

memRqm = capm + max
p called by m

memRqp

⇒ summarize over statement instances, i.e., compose with
M = (dom

−−−→
I)−1

D := {

m0[m]->S1[c] : 0<=c<m; m0[m]->S2[c] : 0<=c<m;

m1[k]->S3[i] : 1<=i<=k; m1[k]->S4[i] : 1<=i<=k;

m2[n]->S5[]; m2[n]->S6[j] : 1<=j<=n };

DM := (domain_map D)ˆ-1;



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 30 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

retm + capm =
∑

p called by m
retp

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 30 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

retm + capm =
∑

p called by m
retp

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 30 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem2

How much (scoped) memory is needed?
⇒ compute for each method

retm size of memory returned by m

capm size of memory “captured” (not returned) by m

memRqm total memory requirements of m

retm + capm =
∑

p called by m
retp

memRqm = capm + max
p called by m

memRqp

B[] m2(int n) {

B[] arrB = new B[n];

for (j=1; j<=n; j++)

B b = new B();

return arrB;

}

ret_m2 := DM .

{ [m2[n] -> S5[]] -> n : n >= 0 };

cap_m2 := DM .

{ [m2[n] -> S6[j]] -> 1 };

req_m2 := cap_m2 +

{ m2[n] -> max(0) };



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 31 / 35

Dynamic Memory Requirement Estimation [CFGV2006]
void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

capm1(k) =
∑

1≤i≤k

(1 + retm2(i))

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1

⇒ define parameter binding

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 31 / 35

Dynamic Memory Requirement Estimation [CFGV2006]
void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

capm1(k) =
∑

1≤i≤k

(1 + retm2(i))

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1
⇒ define parameter binding

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 32 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem3

void m1(int k) {

for (i = 1; i <= k; i++) {

A a = new A(); /* S3 */

B[] dummyArr = m2(i); /* S4 */

}

}

memRqm = capm + max
p called by m

memRqp

CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };

ret_m1 := { m1[k] -> 0 };

cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));

req_m1 := cap_m1 + (DM . CB_m1 . req_m2);



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 33 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem4

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 .

combine reductions

req_m2));



Simple Applications Dynamic Memory Requirement Estimation December 19, 2014 33 / 35

Dynamic Memory Requirement Estimation [CFGV2006]

mem4

void m0(int m) {

for (c = 0; c < m; c++) {

m1(c); /* S1 */

B[] m2Arr = m2(2 * m - c); /* S2 */

}

}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];

[m0[m] -> S2[c]] -> m2[2 * m - c] };

ret_m0 := { m0[m] -> 0 };

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);

req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 .

combine reductions

req_m2));



Simple Applications Reuse Distance Computation December 19, 2014 34 / 35

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation December 19, 2014 34 / 35

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation December 19, 2014 34 / 35

Reuse Distance Computation
Given an access to a cache line `, how many distinct cache lines have
been accessed since the previous access to `?
⇒ Is the cache line still in the cache?

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

Assume A[i] in cache line bi/3c

i 0 1 2 3 4 5 6 7
r a b c a b c a b c a b c a b a b a b a b
r@i 0 7 0 1 6 2 2 5 4 3 4 6 4 3 5 2 6 1 7 0⌊
(r@i)/3

⌋
0 2 0 0 2 0 0 1 1 1 1 2 1 1 1 0 2 0 2 0

distance 0 0 2 1 2 2 1 0 1 1 1 3 2 1 1 3 3 2 2 2



Simple Applications Reuse Distance Computation December 19, 2014 35 / 35

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : j = floor(i/3) };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);



Simple Applications Reuse Distance Computation December 19, 2014 35 / 35

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : j = floor(i/3) };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);



Simple Applications Reuse Distance Computation December 19, 2014 35 / 35

Reuse Distance Computation

brd

for (i = 0; i <= 7; ++i) {

A[i]; //reference a
A[7-i]; //reference b
if (i <= 3)

A[2*i]; //reference c
}

domain
cache

time

A

S

M

NEXT

Assume A[i] in cache line bi/3c

D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : 0 <= i <= 3 };

C := { A[i] -> L[j] : j = floor(i/3) };

A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;

TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;

T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;

M := lexmin T;

NEXT := S . M . (Sˆ-1); # map to next access to same cache line

AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));

BEFORE := S . (LEˆ-1) . (Sˆ-1);

card ((AFTER_PREV * BEFORE) . A);


	Introduction
	Basic Concepts and Operations
	Sets and Statement Instances
	Maps and AST Generation
	Access Relations and Polyhedral Model
	Dataflow Analysis
	Transitive Closures
	Basic Counting
	Computing Bounds
	Weighted Counting

	Simple Applications
	Pointer Conversion
	Dynamic Memory Requirement Estimation
	Reuse Distance Computation


