iscc Tutorial

Sven Verdoolaege

INRIA, France and KU Leuven
Sven.Verdoolaege@inria.fr
December 19, 2014

Outline

(1) Introduction
(2) Basic Concepts and Operations

- Sets and Statement Instances
- Maps and AST Generation
- Access Relations and Polyhedral Model
- Dataflow Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Outline

(1) Introduction

(2) Basic Concepts and Operations

- Sets and Statement Instances
- Maps and AST Generation
- Access Relations and Polyhedral Model
- Dataflow Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
\Rightarrow inspired by Omega Calculator from the Omega Project

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://barvinok.gforge.inria.fr/

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://barvinok.gforge.inria.fr/
- How to run iscc?
\Rightarrow compile and install barvinok following the instructions in README
\Rightarrow run iscc
Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc

Introduction

- What is iscc?
\Rightarrow interactive interface to the barvinok counting library
\Rightarrow also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
\Rightarrow inspired by Omega Calculator from the Omega Project
- Where to get iscc?
\Rightarrow currently distributed as part of barvinok package
\Rightarrow available from http://barvinok.gforge.inria.fr/
- How to run iscc?
\Rightarrow compile and install barvinok following the instructions in README
\Rightarrow run iscc
Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation

Interaction with Libraries and Tools

isl: manipulates parametric affine sets and relations barvinok: counts elements in parametric affine sets and relations pet: extracts polyhedral model from clang AST PPCG: Polyhedral Parallel Code Generator iscc: interactive calculator isa: prototype tool set including derivation of process networks and equivalence checker

Overview of isl

isl is a thread-safe C library for manipulating integer sets and relations

- bounded by affine constraints
- involving symbolic constants and
- existentially quantified variables
and quasi-affine and quasi-polynomial functions on such domains
Supported operations by core library include
- intersection
- union
- set difference
- integer projection
- coalescing
- closed convex hull

Polyhedral compilation library

- schedule trees
- dataflow analysis
- sampling, scanning
- integer affine hull
- lexicographic optimization
- transitive closure (approx.)
- parametric vertex enumeration
- bounds on quasipolynomials
- scheduling
- AST generation

Outline

Introduction

(2) Basic Concepts and Operations

- Sets and Statement Instances
- Maps and AST Generation
- Access Relations and Polyhedral Model
- Dataflow Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting

Simple Applications

- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Statement Instance Set

for (i = 1; i $<=5$; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$)
/* S */

Statement Instance Set

for
(i = 1; i <= 5; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$)

$$
/ * S * /
$$

Statement Instance Set

for
(i = 1; i <= 5; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /*S */

$$
\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=5 \text { and } 1<=\mathrm{j}<=\mathrm{i}\}
$$

Statement Instance Set

for
(i = 1; i <= 5; ++i)
for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$)

$$
1 * S * /
$$

(optional) name of space

$\{S[i, j]: 1<=i<=5$ and $1<=j<=i\}$

Statement Instance Set

for
(i = 1; i <= 5; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /*S */
(optional) name of space

$\{S[i, j \rrbracket: 1<=i<=5$ and $1<=j<=i\}$
set variables

Statement Instance Set

for
(i = 1; i <= 5; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
(optional) name of space

Statement Instance Set

for
(i = 1; i <= n; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
(optional) name of space

[n] -> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$
Presburger formula

Statement Instance Set

for
(i = 1; i <= n; ++i) for ($\mathrm{j}=1$; j <= $\mathrm{i} ;++\mathrm{j}$) /* S */
(optional) name of space

$$
[n]->\{S[i, j]: 1<=i<=n \text { and } 1<=j<=i\}
$$

Set Variables and Symbolic Constants

- set variables
- local to set
- identified by position
- symbolic constants
- global
- identified by name

Set Variables and Symbolic Constants

- set variables
- local to set
- identified by position
- symbolic constants
- global
- identified by name

$$
\text { [n] -> }\{[i, j]: 1<=i<=n \text { and } 1<=j<=i\}
$$

is equal to
[n] -> \{ [a,b] : $1<=\mathrm{a}<=\mathrm{n}$ and $1<=\mathrm{b}<=\mathrm{a}\}$
but not equal to
[n] -> \{ [j,i] : 1 <= i <= n and $1<=$ j <= i \}
or
[m] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{m}$ and $1<=\mathrm{j}<=\mathrm{i}\}$

AST Generation, Schedules and Maps

$$
\begin{aligned}
& \text { for (i = 1; i <= n; ++i) } \\
& \text { for (} \mathrm{j}=1 \text {; } \mathrm{j} \text { <= } \mathrm{i} \text {; ++j) } \\
& \text { /* S */ }
\end{aligned}
$$

codegen [n] -> \{ S[i,j] : 1 <= i <= n and 1 <= j <= i$\}$;
\Rightarrow generate AST that visits elements in lexicographic order

AST Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\begin{aligned}
& \text { for (} \mathrm{j}=1 \text {; } \mathrm{j} \text { <= } \mathrm{i} ;++\mathrm{j} \text {) } \\
& \text { /* S */ }
\end{aligned}
$$

codegen [n] -> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate AST that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps instance set to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
\{S[i,j] -> [t1,t2] : t1 = j and t2 = i\}

AST Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\begin{aligned}
& \text { for (} \mathrm{j}=1 \text {; } \mathrm{j} \text { <= } \mathrm{i} ;++\mathrm{j} \text {) } \\
& \text { /* S */ }
\end{aligned}
$$

codegen [n] -> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate AST that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps instance set to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
\{S[i,j] -> [t1, t2] : t1 = j and t2 = i\} or \{S[i,j] -> [j,i]\}

AST Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\text { for } \begin{aligned}
&(j=1 ; ~ j j= \\
& / *
\end{aligned}
$$

codegen [n] -> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate AST that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps instance set to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
$\{\mathrm{S}[\mathrm{i}, \mathrm{j}]$-> [t1, t2] : t1 = j and $\mathrm{t} 2=\mathrm{i}\}$ or $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]$-> [j,i]\}
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\} ;$
codegen (\{S[i,j] -> [j,i]\} * S);

AST Generation, Schedules and Maps

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)
codegen [n] -> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$;
\Rightarrow generate AST that visits elements in lexicographic order
What if a different order is needed?
\Rightarrow apply a schedule: maps instance set to multi-dimensional time
\Rightarrow multi-dimensional time is ordered lexicographically
Example: interchange i and j
$\{\mathrm{S}[\mathrm{i}, \mathrm{j}]$-> [t1, t2] : t1 = j and $\mathrm{t} 2=\mathrm{i}\}$ or $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]$-> [j,i]\}
$\mathrm{S}:=[\mathrm{n}]$-> $\{\mathrm{S}[\mathrm{i}, \mathrm{j}]: 1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{i}\}$;
codegen (\{S[i,j] -> [j,i]\} *S);

AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

Examples:
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: \mathrm{Q}<=\mathrm{i}<=\mathrm{n}$; $\mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);

AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

```
Examples:
disjunction
\(\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n} ; \mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}\);
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);
```


AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

```
Examples:
disjunction
\(\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\); \(\mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}\);
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen ( M * S);
    all elements of A before any element of B
```


AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

Examples:

disjunction

$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n} ; \mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
$\mathrm{M}:=\{\mathrm{A}[\mathrm{i}]->[0, i] ; \mathrm{B}[\mathrm{i}]->[1, i]\} ;$
codegen (M * S);
all elements of A before any element of B
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: \mathrm{O}<=\mathrm{i}<=\mathrm{n}$; $\mathrm{B}[\mathrm{i}]$: $\mathrm{O}<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [i,1]; B[i] -> [i,0] \};
codegen (M * S);

AST Generation, Schedules and Maps

Generating AST for more than one space/statement
\Rightarrow spaces should be named to distinguish them from each other
\Rightarrow schedule is required because no ordering defined over spaces with different names

Examples:

disjunction

$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n} ; \mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
M := \{ A[i] -> [0,i]; B[i] -> [1,i] \};
codegen (M * S);
all elements of A before any element of B
$\mathrm{S}:=[\mathrm{n}]->\{\mathrm{A}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}$; $\mathrm{B}[\mathrm{i}]: 0<=\mathrm{i}<=\mathrm{n}\}$;
$M:=\{A[i]->[i, 1] ; B[i]->[i, 0]\} ;$
codegen (M * S);
each element of A after corresponding element of B

Access Relations and Polyhedral Model

Simple program with temporary array t :
for $(i=0 ; i<N ;++i)$
S1: $\quad t[i]=f(a[i]) ;$
for $(i=0 ; i<N ;++i)$
S2: $\quad b[i]=g(t[N-i-1])$;

An access relation maps a statement instance to an array index For example, the access relation for the read in S2:
[N] -> \{ S2[i] -> t[N-i-1] \}

Access Relations and Polyhedral Model

Simple program with temporary array t:
for $(i=0 ; i<N ;++i)$
S1: $\quad t[i]=f(a[i]) ;$
for $(i=0 ; i<N ;++i)$
S2: $\quad b[i]=g(t[N-i-1])$;

An access relation maps a statement instance to an array index For example, the access relation for the read in S2:
[N] -> \{ S2[i] -> t[N-i-1] \}
Polyhedral model of a program consists of

- statement instance set
- access relations (must writes, may writes, reads)
- initial schedule

M := parse_file("simple.c");
D := M[0]; W := M[1]; R := M[3]; S := M[4];

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$) $a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
S := [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$
lexmax S;

Lexicographic Optimization

for (i = 0; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$) $a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
$\mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$
lexmax S ; lexicographically last element of set

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
$a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
S := [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$ lexmax S; lexicographically last element of set
- When is a given array element accessed last?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
lexmax ($\mathrm{A}^{\wedge}-1$);

Lexicographic Optimization

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i})$
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
$a[i+j]=f(a[i+j]) ;$

- What is the last iteration of the loop?
S := [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$ lexmax S; lexicographically last element of set
- When is a given array element accessed last?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
lexmax (${ }^{\wedge}-1$);

Lexicographic Optimization

$$
\begin{aligned}
\text { for } & (i=0 ; i<N ;++i) \\
& \text { for }(j=0 ; j<N-i ;++j) \\
& a[i+j]=f(a[i+j]) ;
\end{aligned}
$$

- What is the last iteration of the loop?
$\mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ;$ lexmax S; lexicographically last element of set
- When is a given array element accessed last?

lexicographically last image element

Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```


Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for (i = 0; $\mathrm{i}<\mathrm{N}$; ++i)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
F: $\quad a[i+j]=f(a[i+j])$;
for (i = 0 ; $\mathrm{i}<\mathrm{N}$; ++i)
W: Write(a[i]);
Access relations:

$$
\begin{aligned}
& A 1:=[N]->\{F[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& A 2:=[N]->\{W[i]->a[i]: 0<=i<N\} ;
\end{aligned}
$$

Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j})$
F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]: $0<=i<N$ and $0<=j<N-i\} ;$ A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);

Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]: $0<=i<N$ and $0<=j<N-i\} ;$
A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);
Last write: lexmax R;

Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

$$
\text { for }(j=0 ; j<N-i ;++j)
$$

F: $\quad a[i+j]=f(a[i+j])$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)

W: Write(a[i]);
Access relations:
A1:=[N]->\{F[i,j]->a[i+j]: $0<=i<N$ and $0<=j<N-i\} ;$
A2:=[N]->\{W[i] -> a[i] : 0 <= i < N \};
Map to all writes: R := A2 . (A1^-1);
Last write: lexmax R;
In general: impose lexicographical order on shared iterators

Dataflow Analysis

In general:
last Write before Read under Schedule
Result: last write + set of reads without corresponding write

Dataflow Analysis

In general:
last Write before Read under Schedule
Result: last write + set of reads without corresponding write

```
for (i = 0; i < n; ++i)
T: t[i] = a[i];
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n} ;++\mathrm{i}\) )
    for ( \(\mathrm{j}=0\); j < \(\mathrm{n}-\mathrm{i}\); + j )
F: \(\quad t[j]=f(t[j], t[j+1])\);
for (i = 0; i < n; ++i)
B: b[i] = t[i];
M := parse_file("dep.c");
Write := M[1]; Read := M[2]; Sched := M[3];
last Write before Read under Sched;
```


Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure?

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow M^{\wedge}+$;

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow M^{\wedge}+$;

Result:
(\{ B[] -> $\mathrm{A}[\mathrm{OD}]$: $\mathrm{OQ}<=4$ and $\mathrm{OD}>=3$; B[] -> $\mathrm{A}[2]$;
$\mathrm{A}[\mathrm{i}]$-> $\mathrm{A}[00]$: $\mathrm{i}>=0$ and $\mathrm{i}<=3$ and $00>=1$ and $O 0<=4$ and $O Q>=1+i$ \}, True)

Transitive Closures

Given a graph (represented as an affine map)
M := \{ A[i] -> A[i+1] : 0 <= i <= 3; B[] -> A[2] \};

What is the transitive closure? $\Rightarrow \mathrm{M}^{\wedge}+$;

Result:

exact transitive closure

(\{ B[] -> A[OO] : OO <= 4 and $O 0>=\beta$; B[] -> A[2];
A[i] -> $A[00]$: i >= 0 and $\mathrm{i}<=13$ and $00>=1$ and $O 0<=4$ and $O 0>=1+i$ \}, True)

Reachability Analysis

```
double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
    for (i = 0; i<10;i++)
    x[new][i] = g(x[old][i]);
    new = (new+1) %2; old = (old+1) %2;
}
```

Invariant between new and old?

Reachability Analysis

```
double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
    for (i = 0; i<10;i++)
        x[new][i] = g(x[old][i]);
        new = (new+1) %2; old = (old+1) %2;
}
```

Invariant between new and old?
$\mathrm{T}:=\{[$ new,old $]->[($ new +1$) \% 2,(\mathrm{old}+1) \% 2]\} ;$
SQ := $\{[0,1]\}$;
$\left(\mathrm{T}^{\wedge}+\right)(S Q)$;

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; ++i)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& S:=[N]->\{[i, j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \text { card } S ;
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& S:=[N]->\{[i, j]: Q<=i<N \text { and } 0<=j<N-i \quad\} ; \\
& \text { card } S ; \\
& \text { number of elements in the set }
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& \mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: \mathrm{Q}<=\mathrm{i}<\mathrm{N} \text { and } 0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\} ; \\
& \text { card } \mathrm{S} ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (A^-1);

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)

$$
a[i+j]=f(a[i+j]) ;
$$

- How many times is the statement executed?

$$
\begin{aligned}
& \mathrm{S}:=[\mathrm{N}]->\{[\mathrm{i}, \mathrm{j}]: 0<=\mathrm{i}<\mathrm{N} \text { and } 0<=\mathbf{j}<\mathrm{N}-\mathrm{i}\} ; \\
& \text { card } \mathrm{S} ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?

$$
\begin{aligned}
& A:=[N]->\{[i, j]->a[i+j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \operatorname{card}\left(A^{\wedge}-1\right) ; \text { number of image elements }
\end{aligned}
$$

Cardinality

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N} ;++\mathrm{i}$)
for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}-\mathrm{i} ;++\mathrm{j}$)
$a[i+j]=f(a[i+j])$;

- How many times is the statement executed?

$$
\begin{aligned}
& S:=[N]->\{[i, j]: 0<=i<N \text { and } 0<=j<N-i\} ; \\
& \text { card } S ; \\
& \text { number of elements in the set }
\end{aligned}
$$

- How many times is a given array element written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (A^-1);
- How many array elements are written?
$A:=[N]->\{[i, j]->a[i+j]: 0<=i<N$ and $0<=j<N-i\} ;$
card (ran A);

Quasipolynomials

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i)

$$
\begin{aligned}
& \text { for (j = 1; } j<=n-2 \text { * i; ++j) } \\
& \text { /* S */ }
\end{aligned}
$$

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;

Quasipolynomials

for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n}$; ++i) for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n}-2$ * $\mathrm{i} ;++\mathrm{j}$) /*S */

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;
Result:
[n] $->\left\{\left(\left(-1 / 4 * n+1 / 4 * n^{\wedge} 2\right)-1 / 2 * f \operatorname{loor}((n) / 2)\right)\right.$:
n >= 3$\}$
That is,

$$
-\frac{n}{4}+\frac{n^{2}}{4}-\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } n \geq 3
$$

Quasipolynomials

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=n ;++\mathrm{i}) \\
& \quad \text { for }(j=1 ; j<=n-2 * i ;++j) \\
& \quad / * S * /
\end{aligned}
$$

How many times is S executed?
card [n] -> \{ [i,j] : $1<=\mathrm{i}<=\mathrm{n}$ and $1<=\mathrm{j}<=\mathrm{n}-2 \mathrm{i}\}$;
Result:
[n] -> \{ ($\left.\left(-1 / 4 * n+1 / 4 * n^{\wedge} 2\right)-1 / 2 * f l o o r((n) / 2)\right)$:
n >= 3$\}$
That is,

$$
-\frac{n}{4}+\frac{n^{2}}{4}-\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor \quad \text { if } n \geq 3
$$

Polynomial approximations
\Rightarrow run iscc --polynomial-approximation

Memory Requirements

```
for (i = 0; i < N ; ++i)
for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\) malloc (i * \(\mathrm{j}+\mathrm{i}-\mathrm{N}+1\) );
    /* ... */
    free(p);
    \}
```

How much memory is needed?

Memory Requirements

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed? ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;

Memory Requirements

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
for (j \(=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed?
ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;
Result:
([N] -> $\left\{\max \left(\left(1-2 * N+N^{\wedge} 2\right)\right): N>=1\right\}$, True)

Memory Requirements

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
for (j \(=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) ) \{
    \(\mathrm{p}=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
    /* ... */
    free (p) ;
    \}
```

How much memory is needed?
ub [N] -> \{[i,j] -> i*j+i-N+1: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;
Result:

$$
\left([N]->\left\{\max \left(\left(1-2 * N+N^{\wedge} 2\right)\right): N>=1\right\},\right. \text { True) }
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=i<N$ and $0<=j<N-i \quad\} ;$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=i<N$ and $0<=j<N-i\} ;$
- incremental computation

$$
\text { card [N] -> \{ [i] -> [j] : } 0<=i<N \text { and } 0<=j<N-i \quad\} ;
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
- incremental computation
card [N] -> \{ [i] -> [j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
Result:

$$
\begin{aligned}
& {[\mathrm{N}]->\{[\mathrm{i}]->(\mathrm{N}-\mathrm{i}): \mathrm{i}<=-1+N \text { and } \mathrm{i}>=0\}} \\
& \text { sum [N] -> \{[i] -> (N - i) : i <= - } 1+\mathrm{N} \text { and } \mathrm{i}>=0\} ;
\end{aligned}
$$

Incremental Counting

$$
\begin{gathered}
\text { for }(i=0 ; i<N ;++i) \\
\text { for }(j=0 ; j<N-i ;++j) \\
a[i+j]=f(a[i+j]) ;
\end{gathered}
$$

How many times is the statement executed?

- direct computation
card [N] -> \{ [i,j] : $0<=\mathrm{i}<\mathrm{N}$ and $0<=\mathrm{j}<\mathrm{N}-\mathrm{i}\}$;
- incremental computation

$$
\text { card [N] -> \{ [i] -> [j] : } 0<=i<N \text { and } 0<=j<N-i \quad\} ;
$$

Result:

$$
\begin{aligned}
& \text { [N] -> \{ [i] -> (N - i) : i <= -1 + N and i >= 0 \} } \\
& \text { sum }[\mathrm{N}] \text {-> \{ [i] -> (N - i) : i <= -1 + N and i >= } 0 \text { \}; }
\end{aligned}
$$

Total Memory Allocation

```
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N}\); ++i)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        \(\mathrm{p}[\mathrm{i}][\mathrm{j}]=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
/* ... */
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N} ;++\mathrm{i})\)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        free(p[i][j]);
```

How much memory allocated in total?

Total Memory Allocation

```
for (i = 0; \(\mathrm{i}<\mathrm{N}\); ++i)
        for (j = i; j < N; ++j)
        \(\mathrm{p}[\mathrm{i}][\mathrm{j}]=\operatorname{malloc}(\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1)\);
/* ... */
for ( \(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{N} ;++\mathrm{i})\)
        for ( \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\) )
        free(p[i][j]);
```

How much memory allocated in total?
sum [N] -> $\{[\mathrm{i}, \mathrm{j}]$-> $\mathrm{i} * \mathrm{j}+\mathrm{i}-\mathrm{N}+1: \mathrm{O}<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;

Weighted Counting

Weighted Counting

Weighted Counting

Weighted Counting

$$
\mathrm{F}:=\left\{[\mathrm{x}, \mathrm{y}]->1 / 4 * \mathrm{x}^{\wedge} 2+1 / 4 * y^{\wedge} 2: 1<=\mathrm{x}, \mathrm{y}<=2\right\} ;
$$

$$
\text { D }:=\operatorname{dom} F ;
$$

F(D) ;
\Rightarrow sum of F over points in D
M := \{ [x] -> [x,y] \};

Weighted Counting

$$
\mathrm{F}:=\left\{[\mathrm{x}, \mathrm{y}]->1 / 4 * \mathrm{x}^{\wedge} 2+1 / 4 * y^{\wedge} 2: 1<=\mathrm{x}, \mathrm{y}<=2\right\} ;
$$

$$
\text { D }:=\operatorname{dom} F ;
$$

F (D) ;
\Rightarrow sum of F over points in D
M := \{ [x] -> [x,y] \};
F (M) ;
\Rightarrow sum of F over image of M (alternative notation: M . F)

Compositions with Piecewise (Folds of) Quasipolynomials

f. g;

- f: $D_{1} \rightarrow D_{2}$ is a map
- $\mathrm{g}: D_{2} \rightarrow \mathbb{Q}$ may be
- piecewise quasipolynomial (result of counting problems)
\Rightarrow take sum over intersection of ran f and dom g
- piecewise fold of quasipolynomials (result of upper bound computation)
\Rightarrow compute bound over intersection of ran f and dom g
- ($\mathrm{f} . \mathrm{g}$): $D_{1} \rightarrow \mathbb{Q}$ of same type as g

Note: if f is single-valued, then sum/bound is computed over a single point

Outline

(1) Introduction

(2) Basic Concepts and Operations

- Sets and Statement Instances
- Maps and AST Generation
- Access Relations and Polyhedral Model
- Dataflow Analysis
- Transitive Closures
- Basic Counting
- Computing Bounds
- Weighted Counting
(3) Simple Applications
- Pointer Conversion
- Dynamic Memory Requirement Estimation
- Reuse Distance Computation

Pointer Conversion

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; i < N; ++i) } \\
& \text { for (j = i; } j<N ;++j \text {) \{ } \\
& \text { p += } 1+j \text { * ((j-i)/4); } \\
& \text { *p = hard_work(i,j); } \\
& \text { \} }
\end{aligned}
$$

Can we parallelize this code?

Pointer Conversion

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; i < N ; ++i) } \\
& \text { for (j = i; j < N; ++j) \{ } \\
& \mathrm{p}+=1+\mathrm{j} \text { * ((j-i)/4); } \\
& \text { *p = hard_work(i,j); } \\
& \text { \} }
\end{aligned}
$$

Can we parallelize this code?
\Rightarrow No, (false) dependency through p
\Rightarrow Compute closed formula for p

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

Pointer Conversion

Can we parallelize this code?
\Rightarrow No, (false) dependency through p
\Rightarrow Compute closed formula for p

$$
p=a+\sum_{\left(i^{\prime}, j^{\prime}\right) \in S} j^{\prime}\left\lfloor\frac{j^{\prime}-i^{\prime}}{4}\right\rfloor
$$

$$
\left(i^{\prime}, j^{\prime}\right) \mid<\langle i, j)
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

$$
\begin{aligned}
& \text { p = a; } \\
& \text { for (i = 0; i < N ; ++i) } \\
& \text { for (j = i; j < N; ++j) \{ } \\
& \mathrm{p}+=1+\mathrm{j} \text { * ((j-i)/4); } \\
& \text { *p = hard_work(i,j); } \\
& \text { \} }
\end{aligned}
$$

Pointer Conversion

$$
\left.p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime} \left\lvert\, \frac{j^{\prime}-i^{\prime}}{4}\right.\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$

Pointer Conversion

$$
\begin{aligned}
& \qquad p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\
\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right] \\
& \text { with } S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\} \\
& S:=[N]->\{[i, j]: 0<=i<N \text { and } i<=j<N\} ; \\
& L:=S \ll=S ; \\
& \text { INC }:=\left\{[[i, j]->[i,, j \prime]]->1+j \prime *\left[\left(j^{\prime}-i \prime\right) / 4\right]\right\} ; \\
& \text { INC } \left.:=\text { INC * (wrap }\left(L^{\wedge}-1\right)\right) ; \\
& \text { sum INC; }
\end{aligned}
$$

Pointer Conversion

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \preccurlyeq(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right\rfloor
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
S := [N] -> \{ [i,j]: 0 <= $i<N$ and $i<=j<N$ \};
$\mathrm{L}:=\mathrm{S} \ll=\mathrm{S}$;
INC := \{ [[i,j] -> [i’,j’]] -> 1 + j’ * [(j’-i’)/4] \};
INC := INC * (wrap (L^-1));
sum INC;

Pointer Conversion

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime}\left\lfloor\frac{j^{\prime}-i^{\prime}}{4}\right\rfloor
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
S := [N] -> \{ [i,j]: $0<=\mathrm{i}<\mathrm{N}$ and $\mathrm{i}<=\mathrm{j}<\mathrm{N}\}$;
$\mathrm{L}:=\mathrm{S} \ll=\mathrm{S}$;
INC := \{[[i,j] -> [i', j’]] -> $1+j$ * [(j'-i’)/4] \};
INC := INC (wrap $\left(L^{\wedge}-1\right)$);
sum INC;
embed map in a set

Pointer Conversion

$$
p=a+\sum_{\substack{\left(i^{\prime}, j^{\prime}\right) \in S \\\left(i^{\prime}, j^{\prime}\right) \leqslant(i, j)}} j^{\prime}\left[\frac{j^{\prime}-i^{\prime}}{4}\right]
$$

with $S=\left\{\left(i^{\prime}, j^{\prime}\right) \in \mathbb{Z}^{2} \mid 0 \leq i^{\prime}<N \wedge i^{\prime} \leq j^{\prime}<N\right\}$
map: (elements of) left set lexicographically smaller than right set
S := [N] -> \{ [i,j]: 0 <= $i<N$ and $i<=j<N$ \};
L := S <<= S;
INC := \{[[i,j] -> [i’,j’]] -> $1+j ’$ * [(j’-i’)/4] \};
INC := INC * (wrap (L^-1));
sum INC;

embed map in a set

Note: if domain of argument to sum [ub] is an embedded map, then sum [bound] is computed over range of embedded map

Dynamic Memory Requirement Estimation [CFGV2006]

 How much memory is needed to execute the following program?```
void m@(int m) {
 for (c = 0; c < m; c++) {
 m1(c)
 /*S1*/
 B[] m2Arr = m2(2*m-c); /*S2*/
 }
}
void m1(int k) {
 for (i = 1; i <= k; i++) {
 A a = new A(); /*S3*/
 B[] dummyArr = m2(i); /*S4*/
 }
}
B[] m2(int n) {
 B[] arrB = new B[n]; /*S5*/
 for (j = 1; j <= n; j++)
 B b = new B(); /*S6*/
 return arrB;
}
```


## Dynamic Memory Requirement Estimation [CFGV2006]

 How much memory is needed to execute the following program?```
void m@(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /*S1*/
        B[] m2Arr = m2(2*m-c); /*S2*/
    }
}
void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A(); /*S3*/
    B[] dummyArr = m2(i); /*S4*/
    }
}
B[] m2(int n) {
D := {
mQ[m]->S1[c] : 0<=c<m;
m0[m]->S2[c] : 0<=c<m;
m1[k]->S3[i] : 1<=i<=k;
m1[k]->S4[i] : 1<=i<=k;
m2[n]->S5[];
m2[n]->S6[j] : 1<=j<=n
    B[] arrB = new B[n]; /*S5*/
    for (j = 1; j <= n; j++)
        B b = new B(); /*S6*/
    return arrB;
```

\}

Dynamic Memory Requirement Estimation [CFGV2006]

 How much (scoped) memory is needed?\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
cap $_{m}$ size of memory "captured" (not returned) by m $\mathrm{memRq}_{\mathrm{m}}$ total memory requirements of m

$$
\begin{aligned}
\text { ret }_{\mathrm{m}}+\text { cap }_{\mathrm{m}} & =\sum_{\mathrm{p} \text { called by } \mathrm{m}} \text { ret }_{\mathrm{p}} \\
\operatorname{memRq}_{\mathrm{m}} & =\operatorname{cap}_{\mathrm{m}}+\max _{\mathrm{p} \text { called by } \mathrm{m}} \operatorname{memRq}_{\mathrm{p}}
\end{aligned}
$$

Dynamic Memory Requirement Estimation [CFGV2006]

 How much (scoped) memory is needed?\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
$\mathrm{cap}_{\mathrm{m}}$ size of memory "captured" (not returned) by m $\mathrm{memRq}_{\mathrm{m}}$ total memory requirements of m

$$
\begin{aligned}
\text { ret }_{\mathrm{m}}+\text { cap }_{\mathrm{m}} & =\sum_{\mathrm{p} \text { called by m}} \operatorname{ret}_{\mathrm{p}} \\
\operatorname{memRq}_{\mathrm{m}} & =\operatorname{cap}_{\mathrm{m}}+\max _{\mathrm{p} \text { called by } \mathrm{m}} \operatorname{memRq}_{\mathrm{p}}
\end{aligned}
$$

\Rightarrow summarize over statement instances, i.e., compose with

$$
\begin{aligned}
& M=(\underset{\longrightarrow}{\operatorname{dom}} I)^{-1} \\
& \text { D := \{ } \\
& m \theta[\mathrm{~m}]->\mathrm{S} 1[\mathrm{c}] \text { : } 0<=\mathrm{c}<\mathrm{m} ; \mathrm{m} \theta[\mathrm{~m}]->\mathrm{S} 2[\mathrm{c}] \text { : } 0<=\mathrm{c}<\mathrm{m} \text {; } \\
& m 1[k]->S 3[i]: 1<=i<=k ; ~ m 1[k]->S 4[i]: 1<=i<=k ; \\
& m 2[n]->S 5[] ; \quad m 2[n]->S 6[j]: 1<=j<=n\} \text {; } \\
& \text { DM := (domain_map D) }-1 \text {; }
\end{aligned}
$$

Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{\mathrm{m}}$ size of memory returned by m
cap $_{m}$ size of memory "captured" (not returned) by m $m^{m e m R q} q_{m}$ total memory requirements of m

$$
\begin{aligned}
\text { ret }_{\mathrm{m}}+\text { cap }_{\mathrm{m}} & =\sum_{\mathrm{p} \text { called by } \mathrm{m}} \text { ret }_{\mathrm{p}} \\
\operatorname{memRq}_{\mathrm{m}} & =\text { cap }_{\mathrm{m}}+\max _{\mathrm{p} \text { called by m}} \operatorname{memRq}_{\mathrm{p}}
\end{aligned}
$$

Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
cap ${ }_{\mathrm{m}}$ size of memory "captured" (not returned) by m memRq m_{m} total memory requirements of m

$$
\begin{aligned}
\text { ret }_{m}+\text { cap }_{\mathrm{m}} & =\sum_{\text {p called by } \mathrm{m}} \text { ret }_{\mathrm{p}} \\
\operatorname{memRq}_{\mathrm{m}} & =\text { cap }_{\mathrm{m}}+\max _{\mathrm{p} \text { called by m}} \operatorname{memRq}_{\mathrm{p}}
\end{aligned}
$$

```
B[] m2(int n) {
    B[] arrB = new B[n];
    for (j=1; j<=n; j++)
        B b = new B();
    return arrB;
```

\}

Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
\Rightarrow compute for each method
ret $_{m}$ size of memory returned by m
cap $_{\mathrm{m}}$ size of memory "captured" (not returned) by m memRq m_{m} total memory requirements of m

$$
\begin{aligned}
\text { ret }_{m}+\text { cap }_{\mathrm{m}} & =\sum_{\text {p called by m }} \text { ret }_{\mathrm{p}} \\
\operatorname{memRq}_{\mathrm{m}} & =\text { cap }_{\mathrm{m}}+\max _{\mathrm{p} \text { called by m }} \operatorname{memRq}_{\mathrm{p}}
\end{aligned}
$$

```
B[] m2(int n) {
```

 B[] arrB = new B[n];
 for (\(\mathrm{j}=1\); \(\mathrm{j}<=\mathrm{n}\); \(\mathrm{j}++\))
 B b = new B() ;
 return arrB;
    ```
ret_m2 := DM .
    { [m2[n] -> S5[]] -> n : n >= 0 };
cap_m2 := DM .
    { [m2[n] -> S6[j]] -> 1 };
req_m2 := cap_m2 +
    { m2[n] -> max(0) };
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m1(int k) {
    for (i = 1; i <= k; i++) {
    A a = new A(); /* S3 */
    B[] dummyArr = m2(i); /* S4 */
    }
}
```

$$
\operatorname{cap}_{\mathrm{m} 1}(k)=\sum_{1 \leq i \leq k}\left(1+\operatorname{ret}_{\mathrm{m} 2}(i)\right)
$$

ret_m2 is a function of the arguments of m 2
We want to use it as a function of the arguments and local variables of m 1

Dynamic Memory Requirement Estimation [CFGV2006]

 void m1(int k) \{$$
\begin{aligned}
& \text { for (i = 1; i <= k; i++) \{ } \\
& \text { A a = new A(); /* S3 */ } \\
& \text { B[] dummyArr = m2(i); /* S4 */ }
\end{aligned}
$$

\}
\}

$$
\operatorname{cap}_{\mathrm{m} 1}(k)=\sum_{1 \leq i \leq k}\left(1+\operatorname{ret}_{\mathrm{m} 2}(i)\right)
$$

ret_m2 is a function of the arguments of m 2
We want to use it as a function of the arguments and local variables of m 1
\Rightarrow define parameter binding

```
CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };
cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));
```


Dynamic Memory Requirement Estimation [CFGV2006]

 void m1(int k) \{for (i = 1; i <= k; i++) \{

$$
\text { A a }=\text { new } \mathrm{A}() ; \quad 1 * S 3 \text {;/ }
$$

$$
\text { B[] dummyArr }=\mathrm{m} 2(\mathrm{i}) ; \quad / * \text { S4 */ }
$$

\}
\}

$$
\operatorname{memRq}_{\mathrm{m}}=\text { cap }_{\mathrm{m}}+\max _{\mathrm{p} \text { called by m}} \mathrm{memRq}_{\mathrm{p}}
$$

```
CB_m1 := { [m1[k] -> S4[i]] -> m2[i] };
ret_m1 := { m1[k] -> 0 };
cap_m1 := DM . ({ [m1[k]->S3[i]] -> 1 } + (CB_m1 . ret_m2));
req_m1 := cap_m1 + (DM . CB_m1 . req_m2);
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m|(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /* S1 */
        B[] m2Arr = m2(2 * m - c); /* S2 */
    }
}
CB_m| := { [m0[m] -> S1[c]] -> m1[c];
        [m0[m] -> S2[c]] -> m2[2 * m - c] };
ret_m0 := { m0[m] -> 0 };
cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);
req_m| := cap_m| + (DM . CB_m0 . (req_m1 . req_m2));
```


Dynamic Memory Requirement Estimation [CFGV2006]

```
void m0(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /* S1 */
        B[] m2Arr = m2(2 * m - c); /* S2 */
    }
}
CB_m0 := { [m0[m] -> S1[c]] -> m1[c];
        [m0[m] -> S2[c]] -> m2[2 * m - c] };
ret_m0 := { m0[m] -> 0 };
cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);
req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 & req_m2));
```


Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
```

\}

Assume A[i] in cache line \i/3」

Reuse Distance Computation

Given an access to a cache line ℓ, how many distinct cache lines have been accessed since the previous access to ℓ ?
\Rightarrow Is the cache line still in the cache?

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
```

\}

Assume A[i] in cache line [i/3」

| i | | 0 | | | 1 | | | 2 | | | 3 | | | | | | | | | 7 | |
| :---: |
| r | a | b | c | a | b | c | a | b | c | a | b | C | a | b | a | b | a | b | a | | |
| r @i | 0 | 7 | 0 | 1 | 6 | 2 | 2 | 5 | 4 | 3 | 4 | 6 | 4 | 3 | 5 | 2 | 6 | 1 | 7 | 0 | 0 |
| |
| (r@i)/3」 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 0 |
| distance | 0 | 0 | 2 | 1 | 2 | 2 | 1 | 0 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | | |

Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
        A[2*i]; //reference c
}
```

Assume A [i] in cache line $\lfloor i / 3\rfloor$

Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
        A[2*i]; //reference c
```



```
}
Assume A[i] in cache line Li/3」
\(\mathrm{D}:=\{\mathrm{a}[\mathrm{i}]: 0<=\mathrm{i}<=7\); \(\mathrm{b}[\mathrm{i}]: 0<=\mathrm{i}<=7\); \(\mathrm{c}[\mathrm{i}]: 0<=\mathrm{i}<=3\);
C := \{ A[i] -> L[j] : j = floor(i/3) \};
\(\mathrm{A}:=(\{\mathrm{a}[\mathrm{i}]->\mathrm{A}[\mathrm{i}] ; \mathrm{b}[\mathrm{i}]->\mathrm{A}[7-\mathrm{i}] ; \mathrm{c}[\mathrm{i}]->\mathrm{A}[2 \mathrm{i}]\}\). C) * D;
S := \{ a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] \} * D;
```


Reuse Distance Computation

```
for (i = 0; i <= 7; ++i) {
    A[i]; //reference a
    A[7-i]; //reference b
    if (i <= 3)
    A[2*i]; //reference c
}
```

Assume A[i] in cache line [i/3」

```
D := { a[i] : 0 <= i <= 7; b[i] : 0 <= i <= 7; c[i] : Q <= i <= 3 };
C := { A[i] -> L[j] : j = floor(i/3) };
A := ({ a[i] -> A[i]; b[i] -> A[7-i]; c[i] -> A[2i] } . C) * D;
S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;
TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;
T := ((S^-1) . A . (A^-1) . S) * LT;
M := lexmin T;
NEXT := S . M . (S^-1); # map to next access to same cache line
AFTER_PREV := (NEXT^-1) . (S . LE . (S^-1));
BEFORE := S . (LE^-1) . (S^-1);
card ((AFTER_PREV * BEFORE) . A);
```

